Pyrene/coumarine-subphthalocyanine conjugates as light harvesting systems with intramolecular energy transfer

Vivian Lioret, Yoann Rousselin, Richard Decreau

To cite this version:

Vivian Lioret, Yoann Rousselin, Richard Decreau. Pyrene/coumarine-subphthalocyanine conjugates as light harvesting systems with intramolecular energy transfer. Dyes and Pigments, 2020, 183, pp.108696. 10.1016/j.dyepig.2020.108696 . hal-03476777

HAL Id: hal-03476777

https://hal.science/hal-03476777

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Manuscript Details

Manuscript number
DYPI_2020_1212
Title
Pyrene/coumarine-subphthalocyanine conjugates as light harvesting systems with intramolecular energy transfer

Article type
Research paper

Abstract

A series of subphthalocyanine-antenna dyads have been successfully designed, synthetized and characterized by $1 \mathrm{H}-$ NMR, 13C-NMR, high-resolution mass spectroscopy, and X-ray diffraction studies with one dyad. Pyrene and coumarine have been appended at the axial position of the subphthalocyanine scaffold using different types of linkers. Photophysical properties of the new compounds have been measured in toluene, tetrahydrofuran, chloroform, dimethyl sulfoxide and methanol. Energy transfer efficiencies between antenna and the subphthalocyanine platform have been investigated and almost quantitative energy transfer occurs in the antenna-platform 5.

Keywords subphthalocyanine; pyrene; coumarine; dyad; fluorescence; intramolecular energy transfer

Corresponding Author Corresponding Author's Institution

Richard decreau University of Burgundy Franche Comté

Order of Authors Vivian Lioret, Yoann Rousselin, Richard decreau Suggested reviewers Mogens Nielsen, Timothy Bender, Christopher Ziegler

Submission Files Included in this PDF

File Name [File Type]
5-Cover Letter.pdf [Cover Letter]
5-Highlight.pdf [Highlights]
05.draft.pdf [Manuscript File]

5-checkcif(1).pdf [Figure]
5-declaration-of-competing-interests(1).pdf [Conflict of Interest]
5-SI_final version.pdf [Supplementary Material]

Submission Files Not Included in this PDF

File Name [File Type]
5-Graphical Abstract.PNG [Graphical Abstract]
To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Dijon, May 27th, 2020

Dear Editor,

We would like to submit a manuscript entitled "Pyrene/coumarine-subphthalocyanine conjugates as light harvesting systems with intramolecular energy transfer" for publication in Dyes and Pigments.

This study reports the syntheses of several dyads of fluorophores and subsequent studies of intramolecular energy transfers. In such dyads the acceptor is a subphthalocyanine, the donor is either a coumarin or a pyrene, and the nature of the linker between both has been varied.
Next, upon careful purification and characterization of the conjugates including X-ray diffraction studies for two candidates, subsequent photophysical studies have been engaged. Upon fluorescence spectroscopy, fluorescence quantum yields have been measured and subsequent energy transfer between both moieties within each dyad has been also measured. Up to five different organic solvents have been examined to carry out such studies. One out of three dyads underwent almost quantitative energy transfer efficiency (E.T.E.).

Overall this study is a blend of organic synthesis of new subphthalocyanine-based fluorophore dyads, and photophysical studies addressing the energy transfer between two fluorophores.

We hope this study will be of interest for readers of Dyes and Pigments.

Sincerely,

Richard A. Decréau

[^0]
Highlight

Required : 85 characters. Here : 85 characters
The Energy Transfer Efficiency was studied in four new subphthalocyanine-fluorophore conjugates

Pyrene/coumarine-subphthalocyanine conjugates as light harvesting systems with intramolecular energy transfer

Vivian Lioret ${ }^{\text {a }}$, Yoann Rousselin ${ }^{\text {a }}$, Richard A. Decréau ${ }^{\text {a, }}{ }^{\text {, }}$

${ }^{\text {a }}$ ICMUB Institute, University Bourgogne - Franche Comté, 9 Avenue Alain Savary, Sciences Mirande, 21078 Dijon, France

* Corresponding author. E-mail address: Richard.Decreau@u-bourgogne.fr (R.A. Decréau).

Abstract

A series of subphthalocyanine-antenna dyads have been successfully designed, synthetized and characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, high-resolution mass spectroscopy and X-ray diffraction for some of them. Pyrene and coumarine have been appended at the axial position of the subphthalocyanine scaffold using different types of linkers. Photophysical properties of the new compounds have been measured in toluene, tetrahydrofuran, chloroform, dimethyl sulfoxide and methanol. Energy transfer efficiencies between antenna and the subphthalocyanine platform have been investigated and almost quantitative energy transfer occurs in the antennaplatform 5.

Keywords: Subphtalocyanine, Pyrene, Coumarine, Dyad, Fluorescence, Intramolecular Energy Transfer

1. Introduction

Energy transfer is a crucial process in nature, but also in more artificial applications, such as the conversion of solar energy into electricity, in optoelectronic devices[1] or in the detection of analytes[2,3]. Over the past decades, this area of research has become a fertile field for the association of two or more chromophores together. The interaction of different partners and the exchange of energy between them has become an attractive investigation domain. Numerous conjugated polyazamacrocycles, such as porphyrins[4, 5], phthalocyanines[6] or naphthalocyanines[4] have been employed as partners for photophysical or electronic studies. Among them, subphthalocyanines, which are lower homologues of phthalocyanines having a central Boron (III) atom, are another important class of chromophores. They are conic-shaped macrocycles, with a $14-\pi$ electron aromatic core. This scaffold is used in many fields, such as organic material[7], photodynamic therapy[8] or optoelectronic[9, 10]. Most functionalizations of the SubPc moieties are done by substitution of the axial halogen.
In order to study energy transfers with subphthalocyanines, pyrene and coumarine have been chosen to absorb light in the UV-blue region of the visible spectrum. Although a few pyreneSubPc dyads have already been described in the literature[11], we specifically investigated the efficiency of the energy transfer between these two units as a function of the nature of the linker. For this purpose, the SubPc platform has been functionalized at the axial position [12, 13] (and not at the iso-indolic position, which may otherwise affect the electronic properties of the
platform) by the pyrene, choosing chemical modifications, such as a triple bond, a B-O-R or a $\mathrm{B}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{R}$ as a linker. Coumarine was also linked to the SubPc platform by a B-O-R link. The photophysical behavior of these antenna-SubPc dyads were explored using fluorescence spectroscopy. SubPc are also known to be good singlet oxygen generator under light exposure[14], yet, we did not measured their ability to perform such generation.

2. Experimental

2.1. Materials and equipments

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III 500 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) from the residual non-deuterated solvent signal. J values are expressed in Hz. HPLC-MS analyses were performed on a ThermoDionex Ultimate 3000 instrument equipped with a diode array detector (Thermo-Dionex, FLD 3400-RS). High-resolution mass spectra (HRMS) were recorded on a LTQ Orbitrap XL (THERMO) equipped with an electrospray (ESI) source. For single crystal X-ray diffraction analyzes, all experimental data procedure and refinement are detailed in Supplementary Information. Data CCDC- 2005981 and 2005982 contain the supplementary crystallographic data for this paper for compound $\mathbf{4}$ and $\mathbf{6}$ respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif

2.2. Fluorescence quantum yield

UV-Visible measurements were performed on an Agilent Cary 60 using a glass cuvette (1x1x3 cm). Fluorescence spectroscopic studies (emission/excitation spectra) were performed on a HORIBA Jobin Yvon Fluorolog spectrophotometer (software FLuorEssence) at $25^{\circ} \mathrm{C}$ (using a temperature control system combined with water circulation), with standard fluorometer cells (Labbox, LB Q, light path: 10 mm , width: 10 mm , chamber volume: 3.5 mL). Fluorescence quantum yields were calculated by relative method using rhodamine 6 G in ethanol ($\Phi_{\mathrm{F}}=0.96$, 488 nm). Emission Spectra were recorded for an absorbance at excitation wavelength comprised between 0.02 and 0.09 . Fluorescence quantum yield $\left(\Phi_{F}\right)$ were determined using the following equation:

$$
\Phi_{F}=\Phi_{F}(S t d) \times\left(\frac{\eta}{\eta(S t d)}\right)^{2} \times\left(\frac{1-10^{-A b s}}{1-10^{-A b s(S t d)}}\right) \times\left(\frac{A(S t d)}{A}\right)
$$

With:
Std corresponds to standard
Φ_{F} and $\Phi_{\mathrm{F}}(\mathrm{Std})$: fluorescence quantum yields
η and η (Std): refractive index of solvent

Abs and Abs (Std): absorbance at excitation wavelength (488 nm)
A and A (Std): areas under the fluorescence curves
2.3. Synthesis

2.3.1. Synthesis of compound $\mathbf{1}$

To a solution of phthalonitrile ($1.06 \mathrm{~g}, 8.27 \mathrm{mmol}$) in dry dichlorobenzene (DCB, 45 mL), under nitrogen atmosphere, was slowly added $\mathrm{BCl}_{3}(20 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 20 mmol) and the reaction was heated at $70^{\circ} \mathrm{C}$ to remove hexane. After 30 min at $70^{\circ} \mathrm{C}$, a condenser was added and the reaction mixture was heated at $180^{\circ} \mathrm{C}$ for 1.5 hours. The color went from light milky yellow to dark purple. Then the reaction mixture was cooled down and a precipitate was formed. The solid was filtrated, washed with methanol and pentane and dried under vacuum to afford compound 1 ($700 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 7.95(\mathrm{~m}, 6 \mathrm{H}), 8.90$ (m, 6H). HR-MS ESI: m/z $431.0966[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{BClN}_{6}{ }^{+}: 431.0978$). HP-LC analysis: retention time 5.83.

2.3.2. Synthesis of compound 2

1-pyrenecarboxaldehyde ($1 \mathrm{~g}, 4.3 \mathrm{mmol}$) and dry THF (20 mL) were mixed together. Sodium borohydride ($165 \mathrm{mg}, 4.3 \mathrm{mmol}$) was added in small portions, together with small portions of methanol to help the solubilization (total volume of added methanol 10 mL). An orange solution was obtained. The reaction was then quenched with a 2% concentrated hydrochloric acid solution. The solvent was removed under reduced pressure. The white powder obtained was dissolved in dichloromethane, washed with water and the organic phase was dried with magnesium sulfate. The solvent was removed under reduced pressure and the resulting solid was subjected to silica gel column chromatography (eluent: DCM) to afford compound $2(0.88 \mathrm{~g}, 88 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 1.90(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}$, $2 \mathrm{H}), 7.98-8.10(\mathrm{~m}, 4 \mathrm{H}), 8.15(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{~m}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 64.04,123.16,124.88,124.92,125.13,125.43,125.46,126.16$, 126.20, 127.55, 127.64, 128.08 , 128.97, 130.94, 131.41, 131.44, 133.92. HR-MS ESI: m/z $247.0762[\mathrm{M}+\mathrm{O}-\mathrm{H}]^{-}\left(\right.$calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{2}^{-}: 247.0765\right)$. HP-LC analysis: retention time 4.78.

2.3.3. Synthesis of compounds $\mathbf{3}, \mathbf{4}$ and $\mathbf{6}$

General procedure. The synthetic method reported here to append aryloxy/alkoxy structures at the axial position of the SubPc platform was reminiscent of that we reported for phenoxy moities.[15] To a solution of compound $1(50 \mathrm{mg}, 0,116 \mathrm{mmol})$ in toluene (5 mL) was added the corresponding antenna $(0,58 \mathrm{mmol})$. The reaction mixture was heated under refluxing conditions during 2-5 days and monitored by LCMS. The solvent was then removed under reduced pressure and the crude product was subjected to silica gel column chromatography.

Compound 3

Compound 3 was synthesized following the general procedure, where the chosen antenna was compound $2(134 \mathrm{mg})$. The reaction mixture was heated under refluxing conditions for 5 days. Target compound $\mathbf{3}$ was obtained after purification of the crude product by silica gel column chromatography using the $\mathrm{DCM} / \mathrm{MeOH}$ mixture $(95 / 5 \mathrm{vol}$.) as an eluent to afford the desired product $3(52 \mathrm{mg}, 74 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 3,40(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.88(\mathrm{~m}, 10 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.76(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 60.55,122.09,122.78$, $124.28,124.48,124.86,124.93,125.24,125.64,126.89,127.22,127.35,127.87,129.69$, $130.56,130.64,131.01,131.15,132.35,151.43$. HR-MS ESI: m/z $627.2069[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{BN}_{6} \mathrm{O}^{+}: 627.2099$). HP-LC analysis: retention time 6.68 min .

Compound 4

Compound 4 was synthesized following the general procedure where the chosen antenna was 1 -hydroxypyrene (127 mg). The reaction mixture was heated under refluxing conditions for 2 days. The final product was obtained after purification of the crude mixture by silica gel column chromatography using DCM as an eluent to afford the desired product 4 ($32 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 5.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.91(\mathrm{~m}$, $7 \mathrm{H}), 7.93(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.81-8.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm}) 116.13,120.67,122.41,124.08,124.20,124.67,125.21,125.23,125.44,125.82$, $126.11,126.21,127.19,130.02,131.13,131.15,131.36,131.38,147.10,151.57$. HR-MS ESI: $\mathrm{m} / \mathrm{z} 613.1908[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{BN}_{6} \mathrm{O}^{+}: 613.1943$). HP-LC analysis: retention time 7.36 min.

Compound 6

Compound 6 was synthesized following the general procedure, where the chosen antenna was 7-hydroxycoumarine (94 mg). The reaction mixture was heated under refluxing conditions for 2 days. Target compound $\mathbf{6}$ was obtained after subjecting the crude mixture to silica gel column chromatography using DCM as an eluent to afford the desired product $6(41 \mathrm{mg}, 64 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 5.27(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, \mathrm{J}=8.5,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 6 \mathrm{H})$, $8.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 161.25,156.62,155.03,151.61$, $143.30,131.07,130.22,128.29,122.48,116.31,113.35,113.11,106.41,77.41,77.16,76.91$.

HR-MS ESI: m/z $557.1527[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{33} \mathrm{H}_{18} \mathrm{BN}_{6} \mathrm{O}_{3}{ }^{+}$: 557.1528). HP-LC analysis: retention time 5.68 min .

2.3.4. Synthesis of compound $\mathbf{5}$

To a solution of ethynylpyrene ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) in THF (4 mL) was added phenylmagnesium bromide $(0.33 \mathrm{~mL}, 1.0 \mathrm{M})$, then the solution was stirred for 1 hour at $60^{\circ} \mathrm{C}$. Then, a solution of compound $\mathbf{1}(95 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF (4 mL) was added to the reaction mixture. After heating at $60^{\circ} \mathrm{C}$ for 16 h , the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography (eluent: DCM) to afford compound 5 ($60 \mathrm{mg}, 44 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm}) 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.90$ $(\mathrm{m}, 3 \mathrm{H}), 7.93(\mathrm{~m}, 6 \mathrm{H}), 8.04(\mathrm{ddd}, J=8.3,5.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm}) 117.13,122.32,124.08,124.14,125.35,125.36,125.51,126.09$, 127.16, 127.97, 128.05, 129.61, 129.86, 130.93, 130.99, 131.12, 131.15, 131.67, 150.70. HRMS ESI: m/z $621.1980[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{BN}_{6}{ }^{+}$: 621.1994). HP-LC analysis: retention time 7.84 min .

3. Results and discussion

The synthetic pathway to get new SubPc species $\mathbf{3}, \mathbf{4}, \mathbf{5}$ and $\mathbf{6}$ is described in Figure 1. The first step was the synthesis of compound $\mathbf{1}$ following a standard cyclotrimerization reaction of phthalonitrile around a Boron atom[16]. The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound shows two signals, as the form of multiplets lying at 7.95 ppm and 8.90 ppm , that correspond to SubPc$\mathrm{H} \beta$ and SubPc-H α protons, respectively (Fig. S1-1). The low solubility of compound $\mathbf{1}$ in common organic solvents did not allow us to get a ${ }^{13} \mathrm{C}$ NMR spectrum. Compound 2 was obtained upon reduction of 1-pyrenecarboxaldehyde with NaBH_{4}. The formation of the desired product was confirmed by the emergence of a signal at 5.40 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, which corresponds to $-\mathrm{OCH}_{2}-$ protons (Fig. S1-2).
SubPc Species $\mathbf{3}, \mathbf{4}$ and $\mathbf{6}$ were successfully synthesized by reacting the antenna with SubPc $\mathbf{1}$ without addition of a base. Target compounds $\mathbf{3}, 4$ and $\mathbf{6}$ were identified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ NMR and by HRMS spectrometry. X-Rays diffraction of SubPc $\mathbf{4}$ and $\mathbf{6}$ were also performed, as shown in Figure 2. Judging from these structures, the conic shape of SubPc unit appears to be easily noticeable. The bonds angle between boron, oxygen and carbon atoms slightly changes from 117° in SubPc 4 to 126° in SubPc 6. It appears that, in the same conditions of temperature and concentration, the antenna $\mathbf{2}$ took five days to achieve quantitative substitution of the axial chorine atom in $\mathbf{1}$, while the reaction was completed in two days for the others antenna. The lowest reactivity of aliphatic alcohols, compared to phenolic substrates, might be the reason for such a difference in reaction time.

The synthesis of SubPc 5 was achieved using phenylmagnesium bromide as a base[17] on acidic 1-ethynylpyrene to afford the corresponding ylide that was subsequently reacted with SubPc 1.
As an example, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ is depicted in Figure 3. As mentioned before, signals showing up at 7.92 ppm and at 8.87 ppm correspond to the protons of the SubPc unit. The two doublets with a 9.4 Hz coupling constant, lying at 7.36 ppm and at 6.08 ppm , correspond to the $-\mathrm{CH}=\mathrm{CH}$ - protons sitting next to the lactone function of the coumarine. The three remaining signals, lying at $5.27 \mathrm{ppm}, 5.33 \mathrm{ppm}$ and 6.83 ppm correspond to the benzylic protons of the coumarine unit. The 2.2 Hz coupling constant is associated with the protons from either side of the ether function.
Signal assignment in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{3}, 4$ and $\mathbf{5}$ were more complicated to achieve, due to the presence of multiple overlayed aromatic signals (Fig. S1-4, 6, 8).

4. Photophysical properties

4.1. Photophysical properties

Abstract

Absorption and fluorescence properties of subphthalocyanines 1, 3-6 were studied by UVVisible spectroscopy and are gathered in Table 1. The absorption and emission spectra of compound 1, 3-6 were recorded in toluene, tetrahydrofuran, chloroform, dimethyl sulfoxide and methanol, from an aprotic apolar to a protic polar solvent. Although highest values of absorption/emission maxima were obtained when the compounds were in solution in DMSO, no solvatochromism was noticeable. Also, no aggregation was observed on spectra, due to the three-dimensional design of molecules. All compounds possess maximum absorption wavelengths between 560 and 572 nm (subphthalocyanine partner) and UV-blue absorption bands between 250 and 370 nm (pyrene or coumarine partners) (Figure 4). Associated maximum emission wavelengths were measured with a Stokes shift around 10 nm . Introduction of the pyrenyl antenna linked to a triple bond in subphthalocyanine $\mathbf{5}$ seams to red-shift both absorption and emission maxima by ca. 5 nm . The observation of distinct absorbance peaks with no (or small) shifts in the absorption values indicate that chromophores do not interact between each other. Functionalization of the boron atom with aryloxy/alkoxy moieties upon substitution of the chlorine atom lowers the fluorescence quantum yield of the molecule by a factor 2 , resulting in compounds with fluorescence quantum yields ranging from 0.11 to 0.25 , depending on the solvent (highest values are obtained for aprotic apolar solvents), except for subphthalocyanine 4, which did not appear to fluoresce.

4.2. Energy transfer studies

Energy transfer properties of antenna-subphthalocyanine conjugates were investigated by fluorescence spectroscopy and are gathered in Table 1. The fluorescence emission spectra of compounds 3-6 were investigated using an excitation wavelength of 345 nm for compounds $\mathbf{3}$ and $\mathbf{4}, 360 \mathrm{~nm}$ for compound 5 and 305 nm for compound $\mathbf{6}$, at $25^{\circ} \mathrm{C}$ in various solvents (Fig. S5-1, 2). Unfortunately, no energy transfer between the pyrenyl unit and the subphthalocyanine platform seems to occur in compound 4. Also, even if any residual fluorescence of the coumarine unit could not be observed upon excitation at the antenna and subsequent energy transfer in compound 6 (corresponding to an efficient energy transfer), it was not possible to determine the energy transfer efficiency (E.T.E.) due to the absorption wavelength of the antenna, located right in the absorption of the subphthalocyanine. On the other hand, compounds $\mathbf{3}$ and $\mathbf{5}$ did show efficient energy transfer processes, ranging from 36% to 84% in 3 and from 84% to 96% in $\mathbf{5}$. In both cases, a strong emission peak around 575 nm was observed upon excitation in the UV-blue region of the spectrum, with residual fluorescence of the pyrenyl antenna for compound 3. The high E.T.E. values obtained with compound $\mathbf{5}$ does indicate a really good energy transfer process between the pyrenyl unit linked to the subphthalocyanine platform through a triple bond. At this stage t whether the energy transfer takes place through the triple bond or through space is a question left opened.

5. Conclusion

This work showed that the introduction of antenna at the axial position of subphthalocyanine $\mathbf{1}$ was successfully performed whatever the nature of the linker. These new conjugates were fully characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR, mass spectrometry, UV-Vis, fluorescence and X-ray diffraction for compounds 4 and $\mathbf{6}$. Absorption and emission measurements showed that an efficient energy transfer occurred in compounds $\mathbf{3}, \mathbf{5}$ and $\mathbf{6}$, with E.T.E. values reaching 95% for compound 5. These new dyads appeared as promising molecular constructs used for applications requiring such energy transfers, such as photovoltaics, molecular probes.

Acknowledgment

We acknowledge Canceropôle Est and FEDER for Funding (RD) and the French Ministry of Higher Education, Research and Innovation for a fellowship (VL). PACSMUB platform is acknowledged for allowing access to all spectrometers to perform the analyses (NMR, Mass). Dr Kévin Renault is acknowledged for discussion and advices regarding fluorescence studies.

References

[1] Balzani V, Credi A, Venturi M. Photochemical conversion of solar energy. ChemSusChem. 2008;1(1-2):26-58.
[2] Shrestha D, Jenei A, Nagy P, Vereb G, Szollosi J. Understanding FRET as a research tool for cellular studies. Int J Mol Sci. 2015;16(4):6718-56.
[3] Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc. 2015;3(4):042006.
[4] Chitta R, Sandanayaka ASD, Schumacher AL, D'Souza L, Araki Y, Ito O, et al. DonorAcceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently
Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer. J Phys Chem. 2007;111:6947-55.
[5] Lazarides T, Charalambidis G, Vuillamy A, Reglier M, Klontzas E, Froudakis G, et al. Promising fast energy transfer system via an easy synthesis: Bodipy-porphyrin dyads connected via a cyanuric chloride bridge, their synthesis, and electrochemical and photophysical investigations. Inorg Chem. 2011;50(18):8926-36.
[6] Bizet F, Ipuy M, Bernhard Y, Lioret V, Winckler P, Goze C, et al. Cellular imaging using BODIPY-, pyrene- and phthalocyanine-based conjugates. Bioorg Med Chem. 2018;26(2):41320.
[7] Klaus D, Knecht R, DragÃasser A, Keil C, Schlettwein D. (Photo-)conduction measurements during the growth of evaporated bulk heterojunctions of a subphthalocyanine donor and a perfluorinated phthalocyanine acceptor. physica status solidi (a). 2009:NA-NA.
[8] Winckel E, Mascaraque M, Zamarrón A, Juarranz de la Fuente Á, Torres T, Escosura A.
Dual Role of Subphthalocyanine Dyes for Optical Imaging and Therapy of Cancer. Advanced Functional Materials. 2018;28(24):1705938.
[9] Del Rey B, Keller U, Torres T, Rojo G, Agullo-Lopez F, Nonell S, et al. Synthesis and Nonlinear Optical, Photophysical, and Electrochemical
Properties of Subphthalocyanines. J Am Chem Soc. 1998;120:12808-17.
[10] Martin G, Rojo G, Agullo-Lopez F, Ferro VR, Garcia de la Vega JM, Martinez-Diaz MV, et al. Subphthalocyanines and Subnaphthalocyanines: Nonlinear Quasi-Planar Octupolar Systems with Permanent Polarity. J phys Chem B. 2002;106:13139-45.
[11] a) El-Khouly ME, El-Refaey A, Nam W, Fukuzumi S, Goktug O, Durmus M. A subphthalocyanine-pyrene dyad: electron transfer and singlet oxygen generation. Photochem Photobiol Sci. 2017;16(10):1512-8; b) Gotfredsen H, Kilde MD, Santella M, Kadziola A, Nielsen MB. Fluorescence switching with subphthalocyanine- dihydroazulene dyads. Mol. Syst. Des. Eng., 2019, (4): 199-205.
[12] Claessens Christian G, González-Rodríguez D, del Rey B, Torres T, Mark G, Schuchmann H-P, et al. Highly Efficient Synthesis of Chloro- and Phenoxy-Substituted Subphthalocyanines. European Journal of Organic Chemistry. 2003;2003(14):2547-51.
[13] Ziessel R, Ulrich G, Elliott KJ, Harriman A. Electronic energy transfer in molecular dyads built around boron-ethyne-substituted subphthalocyanines. Chemistry. 2009;15(20):4980-4.
[14] $\mathrm{Xu} \mathrm{H}, \mathrm{Ng}$ DK. Preparation, spectroscopic properties, and stability of water-soluble subphthalocyanines. Chem Asian J. 2009;4(1):104-10.
[15] Bernhard Y, Winckler P, Chassagnon R, Richard P, Gigot E, Perrier-Cornet JM, et al. Subphthalocyanines: addressing water-solubility, nano-encapsulation, and activation for optical imaging of B16 melanoma cells. Chem Commun (Camb). 2014;50(90):13975-8.
[16] Morse GE, Paton AS, Lough A, Bender TP. Chloro boron subphthalocyanine and its derivatives: dyes, pigments or somewhere in between? Dalton Trans. 2010;39(16):3915-22.
[17] Camerel F, Ulrich G, Retailleau P, Ziessel R. Ethynyl-boron subphthalocyanines displaying efficient cascade energy transfer and large Stokes shifts. Angew Chem Int Ed Engl. 2008;47(46):8876-80.

Figure 2: ORTEP view of compounds 4 (left) and $\mathbf{6}$ (right). Thermal ellipsoids are drawn at 50% probability plot.

Figure 3: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ measured in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Cpd	Solvent	$\lambda_{\text {AbsEm }}(\mathrm{nm})$	$\begin{gathered} \varepsilon \\ \left(\mathrm{L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right) \end{gathered}$	Q. Y.	E. T. E.
1	Toluene	565/572	63000	0.48	1
	THF	562/572	n. d.	0.32	
	CHCl_{3}	565/571	67500	0.32	
	DMSO	569/578	n. d.	0.37	
	MeOH	562/572	n. d.	0.27	
3	Toluene	563/574	50900	0.23	n. d.
	THF	560/572	44000	0.18	36\%
	CHCl_{3}	563/576	46000	0.17	78\%
	DMSO	567/578	45000	0.21	84\%
	MeOH	562/576	39100	0.13	43\%
4	Toluene	563/572	76600	0.01	/
	THF	562/574	58600	<0.01	
	CHCl_{3}	564/574	78200	<0.01	
	DMSO	566/576	77700	<0.01	
	MeOH	560/570	66700	<0.01	

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: compound_4

Bond	$C-C=0.0091$	Wavel	$h=1.54178$
Cell:	$\mathrm{a}=9.9592$ (4)	$\mathrm{b}=12.1772$ (5)	$\mathrm{C}=13.5700$ (6)
	alpha=113.192(2)	beta=96.701(3)	gamma=103.825 (2)
Tempe	100 K		

	Calculated	Reported
Volume	1427.34(11)	1427.34(11)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C40 H21 B N6 O	C40 H21 B N6 O
Sum formula	C40 H21 B N6 O	C40 H21 B N6 O
Mr	612.44	612.44
Dx,g cm-3	1.425	1.425
Z	2	2
$\mathrm{Mu}(\mathrm{mm}-1)$	0.700	0.700
F000	632.0	632.0
F000'	633.80	
h, k, lmax	11,14,16	11,14,16
Nref	5090	5023
Tmin, Tmax	0.922,0.957	$0.733,0.915$
Tmin'	0.783	

Correction method= \# Reported T Limits: Tmin=0.733 Tmax=0.915
AbsCorr = MULTI-SCAN

```
Data completeness= 0.987 Theta(max)=66.941
R(reflections)=0.1041( 3266) wR2(reflections)=0.2813( 5023)
S = 1.048 Npar= 433
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C				
PLAT084_ALERT_3_C	High wR2 Value (i.e. > 0.25)		0.28	Report
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C21	--C24	6.2	s.u.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C15	--C16	0.18	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C16	--C17	0.18	Ang.
PLAT340_ALERT_3_C	Low Bond Precision on $\mathrm{C}-\mathrm{C}$ Bonds		0.00914	Ang

Alert level G

PLAT012_ALERT_1_G No _shelx_res_checksum Found in CIF Please Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C12 -C15 PLAT432_ALERT_2_G Short Inter X...Y Contact C6B
. . C6B
0.12 Report
0.17 Ang.
3.19 Ang.
$1-x, 1-y,-z=2 _665$ Check

```
O ALERT level A = Most likely a serious problem - resolve or explain
O ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
4 ALERT level G = General information/check it is not something unexpected
1 ~ A L E R T ~ t y p e ~ 1 ~ C I F ~ c o n s t r u c t i o n / s y n t a x ~ e r r o r , ~ i n c o n s i s t e n t ~ o r ~ m i s s i n g ~ d a t a ~
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
O ALERT type 5 Informative message, check
```


Datablock: compound_6


```
Data completeness=0.998 Theta(max)=66.797
R(reflections)= 0.0354(4461) wR2(reflections)= 0.0895( 5018)
S = 1.069 Npar= 415
```

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level G
PLAT012_ALERT_1_G No _shelx_res_checksum Found in CIF Please Check

```
O ALERT level A = Most likely a serious problem - resolve or explain
O ALERT level B = A potentially serious problem, consider carefully
O ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
1 ~ A L E R T ~ t y p e ~ 1 ~ C I F ~ c o n s t r u c t i o n / s y n t a x ~ e r r o r , ~ i n c o n s i s t e n t ~ o r ~ m i s s i n g ~ d a t a ,
O ALERT type 2 Indicator that the structure model may be wrong or deficient
O ALERT type 3 Indicator that the structure quality may be low
O ALERT type 4 Improvement, methodology, query or suggestion
O ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

SUPPORTING INFORMATIONS

OUTLINE

I. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S-2
II. RP-HPLC elution profiles of compounds 01, 03, 04, 05 and 06 S-8
III. HRMS analysis S-11
IV. Absorbance, excitation and emission spectra of compounds 01, 03, 04, 05 and 06 in different solvents S-14
V. Energy Transfer Efficiency studies of compounds 03 and 05 in different solvents S-19
VI. X-Ray diffraction informations for compounds 4 and 6 S-21

I. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S1-1: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 01 recorded in CDCl_{3} at 500 MHz and 300 K

Figure S1-2: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{0 2}$ recorded in CDCl_{3} at 500 MHz and 300 K

Figure S1-3: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 02 recorded in CDCl_{3} at 125 MHz and 300 K

Figure S1-4: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 03 recorded in CDCl_{3} at 500 MHz and 300 K
 $\stackrel{7}{7}$

Figure S1-5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 03 recorded in CDCl_{3} at 125 MHz and 300 K

Figure S1-6: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 04 recorded in CDCl_{3} at 500 MHz and 300 K

Figure S1-7: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 04 recorded in CDCl_{3} at 125 MHz and 300 K

Figure S1-8: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 05 recorded in CDCl_{3} at 500 MHz and 300 K

Figure S1-9: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 05 recorded in CDCl_{3} at 125 MHz and 300 K

[^1]Figure S1-10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 06 recorded in CDCl_{3} at 500 MHz and 300 K

Figure S1-11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 06 recorded in CDCl_{3} at 125 MHz and 300 K

II. RP-HPLC elution profiles of compounds 01, 03, 04, 05 and 06

HPLC-MS analyses were performed on a Thermo-Dionex Ultimate 3000 instrument equipped with a diode array detector (Thermo-Dionex, FLD 3400-RS).
HPLC system used: RP-HPLC-MS (Phenomenex Kinetex C_{18} column, $2.6 \mu \mathrm{~m}, 2.1 \times 50 \mathrm{~mm}$) with $\mathrm{MeCN}(+0.1 \% \mathrm{FA})$ and 0.1% aq. formic acid (aq. FA, pH 2.7) as eluents [$5 \% \mathrm{MeCN}$ (0.1 min) followed by linear gradient from 5% to 100% (5 min) of MeCN and maintained at 100% during 3 min] at a flow rate of $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$. UV-visible detection was achieved at 220,260 and 560 nm (+ DAD in the range 220-700 nm). Low resolution ESI-MS detection in the positive/negative mode (full scan, 100-1000 a.m.u., data type: centroid, needle voltage: 3.0 kV , probe temperature: 350 ${ }^{\circ} \mathrm{C}$, cone voltage: 75 V and scan time: 1 s).

Figure S2-1: RP-HPLC elution profile of compound 01 at 560 nm

Figure S2-2: RP-HPLC elution profile of compound 03 at 560 nm

Figure S2-3: RP-HPLC elution profile of compound 04 at 560 nm

Figure S2-4: RP-HPLC elution profile of compound 05 at 560 nm

Figure S2-5: RP-HPLC elution profile of compound 06 at 560 nm

III. HRMS analysis

Figure S3-1: HRMS spectrum of compound 01

Figure S3-2: HRMS spectrum of compound 02

Figure S3-3: HRMS spectrum of compound 03

Figure S3-4: HRMS spectrum of compound 04

Figure S3-5: HRMS spectrum of compound 05

Figure S3-6: HRMS spectrum of compound 06

IV. Absorbance, excitation and emission spectra of compounds 01, 03, 04, 05 and 06 in different

 solventsFigure S4-1: Absorbance, excitation ($\lambda_{\mathrm{em}}=630 \mathrm{~nm}$) and emission ($\lambda_{\mathrm{ex}}=488 \mathrm{~nm}$) spectra of compound $\mathbf{0 1}$ in different solvents

Figure S4-2: Absorbance, excitation ($\lambda_{e m}=630 \mathrm{~nm}$) and emission ($\lambda_{e x}=488 \mathrm{~nm}$) spectra of compound 03 in different solvents

Figure S4-3: Absorbance, excitation ($\lambda_{e m}=630 \mathrm{~nm}$) and emission ($\lambda_{e x}=488 \mathrm{~nm}$) spectra of compound $\mathbf{0 4}$ in different solvents

Figure S4-4: Absorbance, excitation ($\lambda_{e m}=630 \mathrm{~nm}$) and emission ($\lambda_{e x}=488 \mathrm{~nm}$) spectra of compound 05 in different solvents

Figure S4-5: Absorbance, excitation ($\lambda_{e m}=630 \mathrm{~nm}$) and emission ($\lambda_{e x}=488 \mathrm{~nm}$) spectra of compound $\mathbf{0 6}$ in different solvents

V. Energy Transfer Efficiency studies of compounds 03 and 05 in different solvents

Figure S5-1: Energy transfer efficiency of compound $\mathbf{0 3}$ in different solvents

Figure S5-2: Energy transfer efficiency of compound $\mathbf{0 5}$ in different solvents

VI. X-Ray diffraction informations of compounds 4 and 6

Figure S6-1: X-Ray diffraction informations of compound 4

Crystal Data and Experimental

Experimental. Single clear light red plate-shaped crystals of compound 4 were recrystallized from a mixture of DCM and cyclohexane by slow evaporation. A suitable crystal $0.35 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=$ 100.0 (1) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimization.

Crystal Data. $\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{BN}_{6} \mathrm{O}, M_{r}=612.44$, triclinic, $P-1$ (No. 2), $\mathrm{a}=9.9592(4) \AA, \mathrm{b}=12.1772(5) \AA, \mathrm{c}=13.5700(6) \AA, \alpha=$ $113.192(2)^{\circ}, \quad \beta=96.701(3)^{\circ}, \quad \gamma=103.825(2)^{\circ}, \quad V=$ $1427.34(11) \AA^{3}, T=100.0(1) \mathrm{K}, Z=2, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=$ $0.700,18696$ reflections measured, 5023 unique $\left(R_{\text {int }}=\right.$ 0.1053) which were used in all calculations. The final $w R_{2}$ was 0.2813 (all data) and R_{1} was 0.1041 (I > 2(I)).

Compound	4
CCDC	2005981
Internal Reference	20191125VLS4bOP
	y
Formula	$\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{BN}_{6} \mathrm{O}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.425
μ / mm^{-1}	0.700
Formula Weight	612.44
Color	clear light red
Shape	plate
Size/mm ${ }^{3}$	0.35x0.10x0.06
T/K	100.0(1)
Crystal System	triclinic
Space Group	$P-1$
$a / \AA{ }^{\text {a }}$	9.9592(4)
b/Å	12.1772(5)
c / \AA	13.5700(6)
$\alpha /{ }^{\circ}$	113.192(2)
$\beta /{ }^{\circ}$	96.701(3)
$\gamma /{ }^{\circ}$	103.825(2)
V/A ${ }^{3}$	1427.34(11)
Z	2
Z'	1
Wavelength/Å	1.541840
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.647
$\Theta_{\max } /{ }^{\circ}$	66.941
Measured Refl.	18696
Independent Refl.	5023
Reflections with I >	3266
2(I)	
$R_{\text {int }}$	0.1053
Parameters	433
Restraints	0
Largest Peak	0.468
Deepest Hole	-0.359
GooF	1.048
$w R_{2}$ (all data)	0.2813
$w R_{2}$	0.2523
R_{1} (all data)	0.1462
R_{1}	0.1041

Structure Quality Indicators

Reflections:	d min (Cu) 0.84	I/	11.4	Rint	10.53\%	complete	99\%
Refinement:	Shift 0.000	Max Peak	0.5	Min Peak	-0.4	GooF	1.048

A clear light red plate-shaped crystal with dimensions $0.35 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0(1) \mathrm{K}$. Data were measured using ϕ and ω scans' using CuK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX3 (Bruker, 2015) The maximum resolution that was achieved was $\Theta=66.941^{\circ}$ ($0.84 \AA$). The diffraction pattern was indexed. The total number of runs and images was based on the strategy calculation from the program APEX3 (Bruker, 2015) and the unit cell was refined using SAINT (Bruker, V8.40A, after 2013) on 4970 reflections, 27% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.40A, after 2013). The final completeness is 98.70% out to 66.941° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker,2016) was used for absorption correction. $w R_{2}(\mathrm{int})$ was 0.1218 before and 0.0935 after correction. The Ratio of minimum to maximum transmission is 0.8010 . The absorption coefficient μ of this material is $0.700 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.542 \AA$) and the minimum and maximum transmissions are 0.733 and 0.915 . The structure was solved and the space group $P-1$ (\# 2) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z ' is 1 .

Figure 1: View of selected sample.

Table 1: Bond Lengths in Å for compound 4.

Atom	Atom	Length/Å
O1	C9	$1.374(7)$
O1	B1	$1.430(7)$
N1	C1	$1.355(6)$
N1	C8B	$1.342(7)$
N2	C1B	$1.358(7)$
N2	C8B	$1.372(7)$
N2	B1	$1.496(7)$
N3	C1B	$1.353(7)$
N3	C8A	$1.346(6)$
N4	C1A	$1.357(6)$
N4	C8A	$1.365(6)$
N4	B1	$1.499(7)$
N5	C1A	$1.339(7)$
N5	C8	$1.351(7)$
N6	C1	$1.372(6)$
N6	C8	$1.368(6)$
N6	B1	$1.499(7)$
C1	C2	$1.456(7)$
C1A	C2A	$1.459(7)$
C1B	C2B	$1.443(7)$
C2	C3	$1.395(7)$
C2	C7	$1.433(7)$
C2A	C3A	$1.386(7)$
C2A	C7A	$1.426(7)$
C2B	C3B	$1.398(7)$
C2B	C7B	$1.426(7)$
C3	C4	$1.381(8)$
C3A	C4A	$1.388(7)$
C3B	C4B	$1.385(8)$
C4	C5	$1.396(8)$

Atom	Atom	Length/Å
C4A	C5A	$1.404(7)$
C4B	C5B	$1.386(8)$
C5	C6	$1.392(7)$
C5A	C6A	$1.389(7)$
C5B	C6B	$1.380(8)$
C6	C7	$1.386(7)$
C6A	C7A	$1.405(7)$
C6B	C7B	$1.387(7)$
C7	C8	$1.458(7)$
C7A	C8A	$1.452(7)$
C7B	C8B	$1.472(7)$
C9	C10	$1.379(8)$
C9	C14	$1.397(8)$
C10	C11	$1.392(9)$
C11	C12	$1.349(9)$
C12	C13	$1.470(9)$
C12	C15	$1.422(9)$
C13	C14	$1.402(8)$
C13	C24	$1.392(8)$
C14	C23	$1.474(8)$
C15	C16	$1.312(9)$
C16	C17	$1.483(10)$
C17	C18	$1.354(9)$
C17	C24	$1.434(8)$
C18	C19	$1.373(11)$
C19	C20	$1.385(10)$
C20	C21	$1.401(9)$
C21	C22	$1.442(9)$
C21	C24	$1.446(9)$
C22	C23	$1.347(8)$

Table 2: Bond Angles in ${ }^{\circ}$ for compound 04.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C9	O1	B1	$117.0(4)$
C8B	N1	C1	$117.0(4)$
C1B	N2	C8B	$112.6(4)$
C1B	N2	B1	$122.6(4)$
C8B	N2	B1	$123.3(4)$
C8A	N3	C1B	$115.9(4)$
C1A	N4	C8A	$113.4(4)$
C1A	N4	B1	$123.7(4)$
C8A	N4	B1	$122.2(4)$
C1A	N5	C8	$115.9(4)$
C1	N6	B1	$123.3(4)$
C8	N6	C1	$112.3(4)$
C8	N6	B1	$123.0(4)$
N1	C1	N6	$122.1(5)$
N1	C1	C2	$129.3(5)$
N6	C1	C2	$106.5(4)$
N4	C1A	C2A	$105.8(4)$
N5	C1A	N4	$122.9(5)$
N5	C1A	C2A	$129.8(5)$
N2	C1B	C2B	$107.0(4)$
N3	C1B	N2	$123.4(5)$
N3	C1B	C2B	$128.0(5)$
C3	C2	C1	$132.4(5)$
C3	C2	C7	$120.2(5)$

Atom	Atom	Atom	Angle $/^{\circ}$
C7	C2	C1	$106.7(5)$
C3A	C2A	C1A	$132.5(5)$
C3A	C2A	C7A	$121.0(5)$
C7A	C2A	C1A	$106.4(4)$
C3B	C2B	C1B	$132.6(5)$
C3B	C2B	C7B	$119.9(5)$
C7B	C2B	C1B	$107.3(5)$
C4	C3	C2	$117.6(5)$
C2A	C3A	C4A	$118.0(5)$
C4B	C3B	C2B	$117.9(5)$
C3	C4	C5	$122.5(5)$
C3A	C4A	C5A	$121.6(5)$
C3B	C4B	C5B	$121.5(5)$
C6	C5	C4	$120.6(5)$
C6A	C5A	C4A	$121.1(5)$
C6B	C5B	C4B	$122.0(5)$
C7	C6	C5	$118.2(5)$
C5A	C6A	C7A	$117.9(5)$
C5B	C6B	C7B	$117.6(5)$
C2	C7	C8	$106.9(4)$
C6	C7	C2	$120.8(5)$
C6	C7	C8	$132.0(5)$
C2A	C7A	C8A	$107.5(5)$
C6A	C7A	C2A	$120.3(5)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C6A	C7A	C8A	$131.9(5)$
C2B	C7B	C8B	$106.4(5)$
C6B	C7B	C2B	$121.1(5)$
C6B	C7B	C8B	$132.0(5)$
N5	C8	N6	$123.3(5)$
N5	C8	C7	$128.2(5)$
N6	C8	C7	$106.5(4)$
N3	C8A	N4	$123.1(5)$
N3	C8A	C7A	$130.7(5)$
N4	C8A	C7A	$105.2(4)$
N1	C8B	N2	$122.6(5)$
N1	C8B	C7B	$129.7(5)$
N2	C8B	C7B	$105.5(4)$
01	C9	C10	$119.7(6)$
01	C9	C14	$120.1(5)$
C10	C9	C14	$120.2(6)$
C9	C10	C11	$120.5(6)$
C12	C11	C10	$121.7(6)$
C11	C12	C13	$119.0(6)$
C11	C12	C15	$125.1(7)$
C15	C12	C13	$115.8(6)$
C14	C13	C12	$118.2(5)$
C24	C13	C12	$119.5(6)$
C24	C13	C14	$122.3(6)$
C9	C14	C13	$120.2(5)$

Atom	Atom	Atom	Angle $/{ }^{\circ}$
C9	C14	C23	$120.9(5)$
C13	C14	C23	$118.8(5)$
C16	C15	C12	$125.0(7)$
C15	C16	C17	$121.6(6)$
C18	C17	C16	$123.4(7)$
C18	C17	C24	$121.8(7)$
C24	C17	C16	$114.7(6)$
C17	C18	C19	$119.3(8)$
C18	C19	C20	$121.8(7)$
C19	C20	C21	$121.6(8)$
C20	C21	C22	$123.0(6)$
C20	C21	C24	$116.8(7)$
C22	C21	C24	$120.1(6)$
C23	C22	C21	$120.8(6)$
C22	C23	C14	$119.9(6)$
C13	C24	C17	$123.4(7)$
C13	C24	C21	$118.0(6)$
C17	C24	C21	$118.6(6)$
01	B1	N2	$110.9(4)$
O1	B1	N4	$116.1(5)$
01	B1	N6	$117.6(5)$
N2	B1	N4	$104.2(4)$
N2	B1	N6	$103.7(4)$
N4	B1	N6	$102.8(4)$

Crystal Data and Experimental

Experimental. Single clear light red prism-shaped crystals of compound 6 were recrystallized from DCM by slow evaporation. A suitable crystal $0.50 \times 0.24 \times 0.10 \mathrm{~mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a Bruker D8 Venture diffractometer. The crystal was kept at a steady $T=100.0(1) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimization.

Crystal Data. $\mathrm{C}_{34} \mathrm{H}_{19} \mathrm{BCl}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}, M_{r}=641.26$, monoclinic, $P 2_{1} / c$ (No. 14), $a=11.2700$ (6) $\AA, b=16.3338$ (9) $\AA \AA, c=$ 15.6723(6) $\AA, \quad \beta=101.100(3)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ 2831.0(2) $\AA^{3}, T=100.0(1) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=2.478$, 69277 reflections measured, 5018 unique ($R_{\text {int }}=0.0599$) which were used in all calculations. The final $w R_{2}$ was 0.0895 (all data) and R_{1} was 0.0354 ($\mathrm{I}>2 \mathrm{~s}(\mathrm{I})$).

Compound	6
CCDC	2005982
Internal Reference	$20190502 \mathrm{VL297}$
Formula	$\mathrm{C}_{34} \mathrm{H}_{19} \mathrm{BCl}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.505
μ / mm^{-1}	2.478
Formula Weight	641.26
Colour	clear light red
Shape	prism
Size/mm ${ }^{3}$	0.50x0.24x0.10
T/K	100.0(1)
Crystal System	monoclinic
Space Group	$P 21 / c$
a / \AA	11.2700(6)
b/A	16.3338(9)
c / \AA	15.6723(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.100(3)
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	2831.0(2)
Z	4
Z'	1
Wavelength/Å	1.541840
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.948
$\Theta_{\max } /{ }^{\circ}$	66.797
Measured Refl.	69277
Independent Refl.	5018
Reflections with $\mathrm{I}>$ $2(I)$	4461
$R_{\text {int }}$	0.0599
Parameters	415
Restraints	0
Largest Peak	0.241
Deepest Hole	-0.391
GooF	1.069
$w R_{2}$ (all data)	0.0895
$w^{2} 2$	0.0861
R_{1} (all data)	0.0409
R_{1}	0.0354

Structure Quality Indicators

Reflections:	d min (Cu) 0.84	[/\%	43.5	Rint	5.99\%	complete	100\%
Refinement:	Shift 0.001	Max Peak	0.2	Min Peak	-0.4	Goof	1.069

A clear light red prism-shaped crystal with dimensions $0.50 \times 0.24 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil. Data were collected using a Bruker D8 Venture diffractometer equipped with an Oxford Cryosystems low-temperature device operating at $T=100.0(1)$ K. Data were measured using ϕ and ω scans using CuK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program APEX3 (Bruker, 2015) The maximum resolution that was achieved was $\Theta=66.797^{\circ}$ ($0.84 \AA$). The diffraction pattern was indexed. The total number of runs and images was based on the strategy calculation from the program APEX3 (Bruker, 2015) and the unit cell was refined using SAINT (Bruker, V8.38A, after 2013) on 2267 reflections, 3% of the observed reflections. Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, after 2013). The final completeness is 99.80% out to 66.797° in Θ. A multi-scan absorption correction was performed using SADABS-2016/2 (Bruker, 2016) was used for absorption correction. w R_{2} (int) was 0.1162 before and 0.0766 after correction. The Ratio of minimum to maximum transmission is 0.7194 . The absorption coefficient μ of this material is $2.478 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.542 \AA$) and the minimum and maximum transmissions are 0.447 and 0.621 . The structure was solved and the space group $P 2_{1} / c$ (\# 14) determined by the ShelXT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

Figure 2: View of sample batch (left) and selected crystal (right).

Table 3: Bond Lengths in \AA Å for compound 6.

Atom	Atom	Length/Å			Atom	Atom
	C11	C34	$1.775(2)$			N1
C12	C34	C10		$1.350(2)$		
O1	C1	$1.767(2)$			N1	C33
01	B1	$1.355(2)$			N2	C10

Atom	Atom	Length/\&̊
N4	C18	$1.362(2)$
N4	C25	$1.364(2)$
N4	B1	$1.489(2)$
N5	C25	$1.348(2)$
N5	C26	$1.342(2)$
N6	C26	$1.369(2)$
N6	C33	$1.369(2)$
N6	B1	$1.495(2)$
C1	C2	$1.401(2)$
C1	C9	$1.391(2)$
C2	C3	$1.380(2)$
C3	C4	$1.402(3)$
C4	C5	$1.432(2)$
C4	C8	$1.396(2)$
C5	C6	$1.344(3)$
C6	C7	$1.451(3)$
C8	C9	$1.380(2)$
C10	C11	$1.453(2)$
C11	C12	$1.397(2)$
C11	C16	$1.425(2)$
C12	C13	$1.387(3)$

Atom	Atom	Length/̊
C13	C14	$1.403(3)$
C14	C15	$1.383(3)$
C15	C16	$1.394(3)$
C16	C17	$1.455(2)$
C18	C19	$1.460(2)$
C19	C20	$1.390(2)$
C19	C24	$1.426(2)$
C20	C21	$1.384(3)$
C21	C22	$1.400(3)$
C22	C23	$1.386(3)$
C23	C24	$1.391(2)$
C24	C25	$1.459(2)$
C26	C27	$1.458(2)$
C27	C28	$1.393(3)$
C27	C32	$1.419(2)$
C28	C29	$1.389(3)$
C29	C30	$1.395(3)$
C30	C31	$1.390(3)$
C31	C32	$1.392(2)$
C32	C33	$1.457(2)$

Table 4: Bond Angles in ${ }^{\circ}$ for compound 6.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
Cl2	C34	Cl1	110.90(11)
C1	01	B1	126.22(13)
C8	02	C7	122.09(14)
C33	N1	C10	117.38(14)
C10	N2	B1	123.29(14)
C17	N2	C10	112.74(14)
C17	N2	B1	122.08(14)
C18	N3	C17	117.10(15)
C18	N4	C25	113.89(14)
C18	N4	B1	122.44(14)
C25	N4	B1	123.35(15)
C26	N5	C25	116.68(14)
C26	N6	C33	112.83(14)
C26	N6	B1	122.44(14)
C33	N6	B1	123.30(14)
01	C1	C2	123.66(16)
01	C1	C9	116.14(15)
C9	C1	C2	120.18(16)
C3	C2	C1	119.82(16)
C2	C3	C4	121.10(16)
C3	C4	C5	124.39(16)
C8	C4	C3	117.57(16)
C8	C4	C5	118.04(16)
C6	C5	C4	120.82(17)
C5	C6	C7	121.29(16)
02	C7	C6	116.83(15)
03	C7	02	116.21(16)
03	C7	C6	126.96(17)
02	C8	C4	120.74(15)
C9	C8	02	116.80(15)
C9	C8	C4	122.46(16)
C8	C9	C1	118.84(15)
N1	C10	N2	122.36(15)
N1	C10	C11	129.76(15)
N2	C10	C11	105.91(14)
C12	C11	C10	132.11(16)
C12	C11	C16	120.65(16)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C16	C11	C10	$107.07(15)$
C13	C12	C11	$117.92(16)$
C12	C13	C14	$121.41(16)$
C15	C14	C13	$121.21(17)$
C14	C15	C16	$118.39(17)$
C11	C16	C17	$107.09(15)$
C15	C16	C11	$120.38(16)$
C15	C16	C17	$132.29(16)$
N2	C17	C16	$105.91(14)$
N3	C17	N2	$122.77(15)$
N3	C17	C16	$129.53(16)$
N3	C18	N4	$122.23(15)$
N3	C18	C19	$130.74(16)$
N4	C18	C19	$105.52(14)$
C20	C19	C18	$132.51(16)$
C20	C19	C24	$120.66(16)$
C24	C19	C18	$106.79(15)$
C21	C20	C19	$117.91(17)$
C20	C21	C22	$121.56(17)$
C23	C22	C21	$121.21(17)$
C22	C23	C24	$117.99(17)$
C19	C24	C25	$107.45(15)$
C23	C24	C19	$120.61(16)$
C23	C24	C25	$131.89(16)$
N4	C25	C24	$105.21(14)$
N5	C25	N4	$122.00(15)$
N5	C25	C24	$131.43(16)$
N5	C26	N6	$123.12(16)$
C28	C26	C28	C26

Atom	Atom	Atom	Angle/ ${ }^{\circ}$			Atom	Atom	Atom
C27	C32	C33	$107.01(15)$		Angle/ ${ }^{\circ}$			
C31	C32	C27	$120.96(16)$		O1	B1	N2	$116.52(15)$
C31	C32	C33	$131.95(16)$		O1	B1	N4	$107.80(14)$
N1	C33	N6	$122.45(16)$		N4	B1	N2	$118.25(15)$
N1	C33	C32	$130.20(16)$		N4	B1	N6	$104.57(14)$
N6	C33	C32	$105.74(14)$		N6	B1	N2	$104.66(14)$

Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.
Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker AXS, Madison, WI (after 2013).

[^0]: Dr Richard A. Decréau ; Associate Professor ; Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR 6302 CNRS-Université de Bourgogne, BP 47 870, F-21 078 Dijon Cedex, France ; Richard.Decreau@u-bourgogne.fr

[^1]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & (p p m)\end{array}$

